Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Open Forum Infect Dis ; 11(4): ofad697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560612

RESUMO

Background: Tuberculosis (TB) can induce secondary hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory syndrome with high mortality. We integrated all published reports of adult HIV-negative TB-associated HLH (TB-HLH) to define clinical characteristics, diagnostic strategies, and therapeutic approaches associated with improved survival. Methods: PubMed, Embase, and Global Index Medicus were searched for eligible records. TB-HLH cases were categorized into (1) patients with a confirmed TB diagnosis receiving antituberculosis treatment while developing HLH and (2) patients presenting with HLH of unknown cause later diagnosed with TB. We used a logistic regression model to define clinical and diagnostic parameters associated with survival. Results: We identified 115 individual cases, 45 (39.1%) from countries with low TB incidence (<10/100 000 per year). When compared with patients with HLH and known TB (n = 21), patients with HLH of unknown cause (n = 94) more often had extrapulmonary TB (66.7% vs 88.3%), while the opposite was true for pulmonary disease (91.5% vs 59.6%). Overall, Mycobacterium tuberculosis was identified in the bone marrow in 78.4% of patients for whom examination was reported (n = 74). Only 10.5% (4/38) of patients tested had a positive result upon a tuberculin skin test or interferon-γ release assay. In-hospital mortality was 28.1% (27/96) in those treated for TB and 100% (18/18) in those who did not receive antituberculosis treatment (P < .001). Conclusions: Tuberculosis should be considered a cause of unexplained HLH. TB-HLH is likely underreported, and the diagnostic workup of patients with HLH should include bone marrow investigations for evidence of Mycobacerium tuberculosis. Prompt initiation of antituberculosis treatment likely improves survival in TB-HLH.

2.
J Cereb Blood Flow Metab ; : 271678X241241908, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546534

RESUMO

Metabolomic analysis of cerebrospinal fluid (CSF) is used to improve diagnostics and pathophysiological understanding of neurological diseases. Alterations in CSF metabolite levels can partly be attributed to changes in brain metabolism, but relevant transport processes influencing CSF metabolite concentrations should be considered. The entry of molecules including metabolites into the central nervous system (CNS), is tightly controlled by the blood-brain, blood-CSF, and blood-spinal cord barriers, where aquaporins and membrane-bound carrier proteins regulate influx and efflux via passive and active transport processes. This report therefore provides reference for future CSF metabolomic work, by providing a detailed summary of the current knowledge on the location and function of the involved transporters and routing of metabolites from blood to CSF and from CSF to blood.

3.
Infection ; 52(2): 583-595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315377

RESUMO

BACKGROUND: Little is known about the etiology, clinical presentation, management, and outcome of central nervous system (CNS) infections in Indonesia, a country with a high burden of infectious diseases and a rising prevalence of HIV. METHODS: We included adult patients with suspected CNS infections at two referral hospitals in a prospective cohort between April 2019 and December 2021. Clinical, laboratory, and radiological assessments were standardized. We recorded initial and final diagnoses, treatments, and outcomes during 6 months of follow-up. RESULTS: Of 1051 patients screened, 793 were diagnosed with a CNS infection. Patients (median age 33 years, 62% male, 38% HIV-infected) presented a median of 14 days (IQR 7-30) after symptom onset, often with altered consciousness (63%), motor deficits (73%), and seizures (21%). Among HIV-uninfected patients, CNS tuberculosis (TB) was most common (60%), while viral (8%) and bacterial (4%) disease were uncommon. Among HIV-infected patients, cerebral toxoplasmosis (41%) was most common, followed by CNS TB (19%), neurosyphilis (15%), and cryptococcal meningitis (10%). A microbiologically confirmed diagnosis was achieved in 25% of cases, and initial diagnoses were revised in 46% of cases. In-hospital mortality was 30%, and at six months, 45% of patients had died, and 12% suffered from severe disability. Six-month mortality was associated with older age, HIV, and severe clinical, radiological and CSF markers at presentation. CONCLUSION: CNS infections in Indonesia are characterized by late presentation, severe disease, frequent HIV coinfection, low microbiological confirmation and high mortality. These findings highlight the need for earlier disease recognition, faster and more accurate diagnosis, and optimized treatment, coupled with wider efforts to improve the uptake of HIV services.


Assuntos
Infecções do Sistema Nervoso Central , Infecções por HIV , Meningite Criptocócica , Adulto , Humanos , Masculino , Feminino , Estudos Prospectivos , Indonésia/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Infecções do Sistema Nervoso Central/diagnóstico , Infecções do Sistema Nervoso Central/epidemiologia
4.
Sci Rep ; 14(1): 2463, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291295

RESUMO

The pauci-cellular nature of cerebrospinal (CSF), particularly ventricular CSF, and the rapid cell death following sampling, incumbers the use of flow cytometric analysis of these samples in the investigation of central nervous system (CNS) pathologies. Developing a method that allows long-term storage and batched analysis of CSF samples without compromising cell integrity is highly desirable in clinical research, given that CSF is often sampled after hours creating logistical difficulties for fresh processing. We examined percentages and relative proportion of peripheral and brain-derived immune cells in cryopreserved and transfix-treated CSF, compared to freshly processed CSF. Cell proportions were more comparable between Fresh and Cryopreserved CSF (mean of differences = 3.19), than between fresh and transfix-treated CSF (mean of differences = 14.82). No significant differences in cell percentages were observed in fresh versus cryopreserved CSF; however significantly lower cell percentages were observed in transfix-treated CSF compared to Fresh CSF [(CD11b++ (p = 0.01), CD4+ (p = 0.001), CD8+ (p = 0.007), NK cells (p = 0.04), as well as CD69+ activation marker (p = 0.001)]. Furthermore, loss of marker expression of various lymphocyte sub-populations were observed in transfix-treated CSF. Cryopreservation is a feasible option for long-term storage of ventricular CSF and allows accurate immunophenotyping of peripheral and brain-derived cell populations by flow cytometry.


Assuntos
Sistema Nervoso Central , Subpopulações de Linfócitos , Citometria de Fluxo/métodos , Imunofenotipagem , Criopreservação/métodos , Líquido Cefalorraquidiano
5.
CNS Drugs ; 37(11): 957-972, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37978095

RESUMO

Neurotuberculosis has the highest morbidity and mortality risk of all forms of extrapulmonary tuberculosis (TB). Early treatment is paramount, but establishing diagnosis are challenging in all three forms of neurotuberculosis: tuberculous meningitis (TBM), spinal TB and tuberculomas. Despite advancements in diagnostic tools and ongoing research aimed at improving TB treatment regimens, the mortality rate for neurotuberculosis remains high. While antituberculosis drugs were discovered in the 1940s, TB treatment regimens were designed for and studied in pulmonary TB and remained largely unchanged for decades. However, new antibiotic regimens and host-directed therapies are now being studied to combat drug resistance and contribute to ending the TB epidemic. Clinical trials are necessary to assess the effectiveness and safety of these treatments, addressing paradoxical responses in neurotuberculosis cases and ultimately improving patient outcomes. Pharmacokinetic-pharmacodynamic analyses can inform evidence-based dose selection and exposure optimization. This review provides an update on the diagnosis and treatment of neurotuberculosis, encompassing both sensitive and resistant antituberculosis drug approaches, drawing on evidence from the literature published over the past decade.


Assuntos
Antituberculosos , Tuberculose Meníngea , Humanos , Adulto , Antituberculosos/uso terapêutico , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/tratamento farmacológico
6.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158692

RESUMO

Background: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography-mass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results: CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusions: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy. Funding: This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).


Assuntos
Infecções por HIV , Meningite Criptocócica , Tuberculose Meníngea , Adulto , Humanos , Tuberculose Meníngea/tratamento farmacológico , Triptofano/metabolismo , Cinurenina , Infecções por HIV/tratamento farmacológico , Inflamação/microbiologia
7.
IDCases ; 32: e01753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063784

RESUMO

Here we describe a complicated case of a relapsed Leishmania infantum infection after an allogeneic stem cell transplantation (allo-SCT) for primary myelofibrosis. Three years earlier the patient had been diagnosed with a hemophagocytic lymphohistiocytosis secondary to a visceral Leishmania infantum infection, for which he was effectively treated with a cumulative dose of 40 mg/kg liposomal amphotericin B. During the first disease episode he was also diagnosed with primary myelofibrosis for which he received medical follow-up. One year later ruxolitinib was started due to progressive disease. No Leishmania relapse occurred. Nevertheless, the marrow fibrosis progressed, and an allo-SCT was performed. Two months after allo-SCT prolonged fever and a persistent pancytopenia occurred, which was due to a relapse of visceral Leishmaniasis. The infection was refractory to a prolonged treatment with liposomal amphotericin B with a cumulative dose up to 100 mg/kg. Salvage treatment with miltefosine led to reduction of fever within a few days and was followed by a slow recovery of pancytopenia over the following months. The Leishmania parasite load by PCR started to decline and after 3.5 months no Leishmania DNA could be detected anymore and follow-up until ten months afterwards did not show a relapse.

8.
J Infect Dis ; 228(3): 343-352, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36823694

RESUMO

BACKGROUND: The purpose of this study was to assess if single nucleotide polymorphisms (SNPs) in lung mucins MUC5B and MUC5AC are associated with Mycobacterium tuberculosis outcomes. METHODS: Independent SNPs in MUC5B and MUC5AC (genotyped by Illumina HumanOmniExpress array) were assessed for associations with tumor necrosis factor (TNF) concentrations (measured by immunoassay) in cerebral spinal fluid (CSF) from tuberculous meningitis (TBM) patients. SNPs associated with CSF TNF concentrations were carried forward for analyses of pulmonary and meningeal tuberculosis susceptibility and TBM mortality. RESULTS: MUC5AC SNP rs28737416 T allele was associated with lower CSF concentrations of TNF (P = 1.8 × 10-8) and IFN-γ (P = 2.3 × 10-6). In an additive genetic model, rs28737416 T/T genotype was associated with higher susceptibility to TBM (odds ratio [OR], 1.24; 95% confidence interval [CI], 1.03-1.49; P = .02), but not pulmonary tuberculosis (OR, 1.11, 95% CI, .98-1.25; P = .10). TBM mortality was higher among participants with the rs28737416 T/T and T/C genotypes (35/119, 30.4%) versus the C/C genotype (11/89, 12.4%; log-rank P = .005) in a Vietnam discovery cohort (n = 210), an independent Vietnam validation cohort (n = 87; 9/87, 19.1% vs 1/20, 2.5%; log-rank P = .02), and an Indonesia validation cohort (n = 468, 127/287, 44.3% vs 65/181, 35.9%; log-rank P = .06). CONCLUSIONS: MUC5AC variants may contribute to immune changes that influence TBM outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/genética , Tuberculose Meníngea/complicações , Citocinas/genética , Genótipo , Fator de Necrose Tumoral alfa/genética , Polimorfismo de Nucleotídeo Único , Mucina-5AC/genética
9.
medRxiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711829

RESUMO

Background: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography mass-spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results: CSF tryptophan was associated with 60-day mortality from tuberculous meningitis (HR=1.16, 95%CI=1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and HIV-positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95%CI=1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusion: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of mortality. These findings may reveal new targets for host-directed therapy. Funding: This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).

10.
PLoS Biol ; 20(9): e3001765, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36094960

RESUMO

The antituberculosis vaccine Bacillus Calmette-Guérin (BCG) induces nonspecific protection against heterologous infections, at least partly through induction of innate immune memory (trained immunity). The amplitude of the response to BCG is variable, but the factors that influence this response are poorly understood. Metabolites, either released by cells or absorbed from the gut, are known to influence immune responses, but whether they impact BCG responses is not known. We vaccinated 325 healthy individuals with BCG, and collected blood before, 2 weeks and 3 months after vaccination, to assess the influence of circulating metabolites on the immune responses induced by BCG. Circulating metabolite concentrations after BCG vaccination were found to have a more pronounced impact on trained immunity responses, such as the increase in IL-1ß and TNF-α production upon Staphylococcus aureus stimulation, than on specific adaptive immune memory, assessed as IFN-γ production in response to Mycobacterium tuberculosis. Circulating metabolites at baseline were able to predict trained immunity responses at 3 months after vaccination and enrichment analysis based on the metabolites positively associated with trained immunity revealed enrichment of the tricarboxylic acid (TCA) cycle and glutamine metabolism, both of which were previously found to be important for trained immunity. Several new metabolic pathways that influence trained immunity were identified, among which taurine metabolism associated with BCG-induced trained immunity, a finding validated in functional experiments. In conclusion, circulating metabolites are important factors influencing BCG-induced trained immunity in humans. Modulation of metabolic pathways may be a novel strategy to improve vaccine and trained immunity responses.


Assuntos
Vacina BCG , Mycobacterium bovis , Antituberculosos , Glutamina , Humanos , Imunidade Inata , Metaboloma , Taurina , Ácidos Tricarboxílicos , Fator de Necrose Tumoral alfa , Vacinação
11.
Med ; 3(9): 603-611.e2, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36041428

RESUMO

BACKGROUND: Paradoxical inflammatory responses can occur during microbiologically successful antituberculous therapy. Optimal treatment is unknown, but corticosteroids are used most often. It is likely that interleukin-1 (IL-1) plays a central role in the development of these paradoxical responses, and if corticosteroids fail or are undesirable because of adverse effects, anti-IL-1 therapy may therefore be a rational choice. METHODS: We present seven HIV-negative tuberculosis patients with paradoxical responses, two with exclusively pulmonary and five with extrapulmonary tuberculosis. All had received corticosteroids, with unsatisfactory effect. Patients were treated with the IL-1 receptor antagonist anakinra and monitored for reduction of fever and inflammatory markers, imaging evidence of stabilization or regression of lesions, and respiratory improvement. FINDINGS: Six patients had anemia and four patients had lymphopenia at the start of the antituberculosis treatment. Fever was present in six patients at the moment of paradoxical response. Anakinra resulted in the decrease of fever within days, followed by resolution of symptoms and radiological improvement in five patients. Anakinra induced neutropenia, necessitating its cessation in two patients, who recovered quickly afterward. CONCLUSION: Anakinra can be considered in HIV-negative tuberculosis patients with paradoxical responses when steroids fail or are undesired. Given its favorable safety profile and reversible side effects, it is conceivable that anakinra might also be used as first-line adjuvant treatment for paradoxical responses. FUNDING: A.v.L. and R.v.C. are supported by National Institutes of Health (R01AI145781).


Assuntos
Infecções por HIV , Tuberculose , Infecções por HIV/complicações , Humanos , Proteína Antagonista do Receptor de Interleucina 1/efeitos adversos , Receptores de Interleucina-1 , Resultado do Tratamento , Tuberculose/tratamento farmacológico , Estados Unidos
12.
Sci Rep ; 12(1): 8991, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637284

RESUMO

Knowledge about contagiousness is key to accurate management of hospitalized COVID-19 patients. Epidemiological studies suggest that in addition to transmission through droplets, aerogenic SARS-CoV-2 transmission contributes to the spread of infection. However, the presence of virus in exhaled air has not yet been sufficiently demonstrated. In pandemic situations low tech disposable and user-friendly bedside devices are required, while commercially available samplers are unsuitable for application in patients with respiratory distress. We included 49 hospitalized COVID-19 patients and used a disposable modular breath sampler to measure SARS-CoV-2 RNA load in exhaled air samples and compared these to SARS-CoV-2 RNA load of combined nasopharyngeal throat swabs and saliva. Exhaled air sampling using the modular breath sampler has proven feasible in a clinical COVID-19 setting and demonstrated viral detection in 25% of the patients.


Assuntos
COVID-19 , RNA Viral , COVID-19/diagnóstico , Humanos , Nasofaringe , Faringe , RNA Viral/genética , SARS-CoV-2/genética
13.
J Clin Pharmacol ; 62(3): 385-396, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34554580

RESUMO

Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.


Assuntos
Antituberculosos/farmacologia , Moxifloxacina/farmacocinética , Rifampina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Adulto , Antituberculosos/farmacocinética , Área Sob a Curva , Criança , Quimioterapia Combinada , Glucuronosiltransferase/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo
14.
Med ; 2(10): 1163-1170.e2, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34568856

RESUMO

BACKGROUND: Prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding has been described in immunocompromised coronavirus disease 2019 (COVID-19) patients, resulting in protracted disease and poor outcome. Specific therapy to improve viral clearance and outcome for this group of patients is currently unavailable. METHODS: Five critically ill COVID-19 patients with severe defects in cellular immune responses, high SARS-CoV-2 viral RNA loads, and no respiratory improvement were treated with interferon gamma, 100 µg subcutaneously, thrice weekly. Bronchial secretion was collected every 48 h for routine diagnostic SARS-CoV-2 RT-PCR and viral culture. FINDINGS: Interferon gamma administration was followed by a rapid decline in SARS-CoV-2 load and a positive-to-negative viral culture conversion. Four patients recovered, and no signs of hyperinflammation were observed. CONCLUSIONS: Interferon gamma may be considered as adjuvant immunotherapy in a subset of immunocompromised COVID-19 patients. FUNDING: A.v.L. and R.v.C. are supported by National Institutes of Health (R01AI145781). G.J.O. and R.P.v.R. are supported by a VICI grant (016.VICI.170.090) from the Dutch Research Council (NWO). W.F.A. is supported by a clinical fellowship grant (9071561) of Netherlands Organization for Health Research and Development. M.G.N. is supported by an ERC advanced grant (833247) and a Spinoza grant of the Netherlands Organization for Scientific Research.


Assuntos
COVID-19 , Estado Terminal/terapia , Humanos , Imunidade Celular , Imunoterapia , Interferon gama , Pesquisa , SARS-CoV-2 , Estados Unidos
15.
Ned Tijdschr Geneeskd ; 1652021 04 20.
Artigo em Holandês | MEDLINE | ID: mdl-33914429

RESUMO

The SARS-CoV-2 pandemic presents a challenge for healthcare worldwide. In this context, rapid, correct diagnosis and early isolation of infected persons is of great importance. Pneumonia as an expression of COVID-19 is responsible for the most part of morbidity and mortality. Lung ultrasound can provide valuable information about the diagnosis of a COVID-19 pneumonia in daily practice. A normal ultrasound excludes COVID-19 pneumonia. Conversely, finding abnormalities matching with a COVID-19 pneumonia can be useful for isolation policy. Follow up lung ultrasound visualizes the development of the pneumonia and a possible alternative diagnosis can thereby be determined in the event of a deviating clinical course.


Assuntos
COVID-19/diagnóstico , Pulmão/diagnóstico por imagem , Pandemias , Ultrassonografia/métodos , COVID-19/epidemiologia , Humanos , SARS-CoV-2
16.
Viruses ; 13(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670363

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and it has infected over 100 million people in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures, including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, which was originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but it strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, which is in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells that were cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of specific sets of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.


Assuntos
Antivirais/farmacologia , Berberina/farmacologia , Indóis/farmacologia , Pirróis/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Adolescente , Animais , COVID-19/virologia , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/virologia , Humanos , Masculino , RNA Viral/genética , SARS-CoV-2/fisiologia , Células Vero
17.
Curr Opin Neurol ; 34(3): 396-402, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661159

RESUMO

PURPOSE OF REVIEW: Central nervous system (CNS) tuberculosis is the most devastating form of tuberculosis (TB), with mortality and or neurological sequelae in over half of individuals. We reviewed original research and systematic reviews published since 1 January 2019 for new developments in CNS TB pathophysiology, diagnosis, management and prognosis. RECENT FINDINGS: Insight in the pathophysiology is increasing steadily since the landmark studies in 1933, focussing on granuloma type classification, the relevance of the M. tuberculosis bacterial burden and the wide range of immunological responses. Although Xpert/RIF has been recommended by the WHO for extrapulmonary TB diagnosis, culture is still needed to increase the sensitivity of TB meningitis diagnosis. Sequential MRIs can improve understanding of neurological deficits at baseline and during treatment. Pharmacokinetic/pharmacodynamic modelling suggests that higher doses of rifampicin and isoniazid in TB meningitis could improve survival. SUMMARY: Recent studies in the field of CNS-TB have largely focussed on TB meningitis. The outcome may improve by optimizing treatment dosing. This needs to be confirmed in clinical trials. Due to the important role of inflammation, these trials should be used as the platform to study the inflammatory and metabolomic responses. This could improve understanding of the biology of this disease and improve patient outlook by enabling individualised host-directed therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose do Sistema Nervoso Central , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Sensibilidade e Especificidade , Tuberculose do Sistema Nervoso Central/diagnóstico , Tuberculose do Sistema Nervoso Central/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico
18.
Elife ; 102021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33416499

RESUMO

Tuberculous meningitis has high mortality, linked to excessive inflammation. However, adjunctive anti-inflammatory corticosteroids reduce mortality by only 30%, suggesting that inflammatory pathophysiology causes only a subset of deaths. In Vietnam, the survival benefit of anti-inflammatory corticosteroids was most pronounced in patients with a C/T promoter variant in the leukotriene A4 hydrolase (LTA4H) gene encoding an enzyme that regulates inflammatory eicosanoids. LTA4H TT patients with increased expression had increased survival, consistent with corticosteroids benefiting individuals with hyper-inflammatory responses. However, an Indonesia study did not find an LTA4H TT genotype survival benefit. Here using Bayesian methods to analyse both studies, we find that LTA4H TT genotype confers survival benefit that begins early and continues long-term in both populations. This benefit is nullified in the most severe cases with high early mortality. LTA4H genotyping together with disease severity assessment may target glucocorticoid therapy to patients most likely to benefit from it.


Tuberculous meningitis is a serious infection of the lining of the brain, which affects over 100,000 people a year. Without treatment, it is always fatal: even with proper antibiotics, about a quarter of patients do not survive and many will have permanent brain damage. Overactive inflammation is thought to contribute to this process. Corticosteroid drugs, which dampen the inflammatory process, are therefore often used during treatment. However, they merely reduce mortality by 30%, suggesting that only some people benefit from them. Two recent studies have linked the genetic makeup of individuals who have tuberculous meningitis to how they respond to corticosteroids. There were, in particular, differences in the LTA4H gene that codes for an inflammation-causing protein. According to these results, only individuals carrying high-inflammation versions of the LTA4H gene would benefit from the treatment. Yet a third study did not find any effect of the genetic background of patients. All three papers used frequentist statistics to draw their conclusions, only examining the percentage of people who survived in each group. Yet, this type of analysis can miss important details. It also does not work well when the number of patients is small, or when the effectiveness of a drug varies during the course of an illness. Another method, called Bayesian statistics, can perform better under these limitations. In particular, it takes into account the probability of an event based on prior knowledge ­ for instance, that the risk of dying varies smoothly with time. Here, Whitworth et al. used Bayesian statistics to reanalyse the data from these studies, demonstrating that death rates were correlated with the type of LTA4H gene carried by patients. In particular, corticosteroid treatment worked best for people with the high inflammation versions of the gene. However, regardless of genetic background, corticosteroids were not effective if patients were extremely sick before being treated. The work by Whitworth et al. demonstrates the importance of using Bayesian statistics to examine the effectiveness of medical treatments. It could help to design better protocols for tuberculous meningitis treatment, tailored to the genetic makeup of patients.


Assuntos
Epóxido Hidrolases/genética , Genótipo , Longevidade , Tuberculose Meníngea/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Epóxido Hidrolases/metabolismo , Humanos , Pessoa de Meia-Idade , Adulto Jovem
20.
Tuberculosis (Edinb) ; 126: 102019, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202351

RESUMO

Inflammation contributes to the pathophysiology and high mortality of tuberculous meningitis. The IL-1ß pathway has been implicated in immunopathology and could be a target for host-directed therapy. IL-1ß was elevated in the cerebrospinal fluid (CSF) of 225 HIV-uninfected tuberculous meningitis patients in Indonesia compared to controls, but did not predict subsequent mortality, nor did IL-6 or IL-1Ra. Furthermore, genetic loci known to regulate IL1B gene expression did not predict mortality in 443 tuberculous meningitis patients, although two of these loci did predict CSF IL-1ß concentrations. Collectively, these data argue against a role for IL-1ß targeted host-directed therapy in tuberculous meningitis.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1/líquido cefalorraquidiano , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Meníngea/líquido cefalorraquidiano , Adulto , Biomarcadores/líquido cefalorraquidiano , Feminino , Seguimentos , Humanos , Indonésia/epidemiologia , Masculino , Estudos Prospectivos , Taxa de Sobrevida/tendências , Tuberculose Meníngea/microbiologia , Tuberculose Meníngea/mortalidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...